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1 Introduction

Large extra dimensions have been introduced as a way of solving the hierarchy problem, related

to the hierarchy between the Planck and the weak scales. In at extra dimensions, this can be

achieved by assuming that the Standard Model (SM) �elds are localized on a four dimensional

brane, while gravity propagates in the extra dimensional bulk [1]. Under such conditions, the

fundamental Planck scale may be of order of the weak scale. The weakness of the gravitational

interactions is explained by the large volume suppression of the zero mode graviton interactions

with the localized SM �elds. For this mechanism to work, the size of the extra dimensions must

be several orders of magnitude larger than the fundamental scale of the model.

An interesting alternative is achieved in the case of warped extra dimensions proposed by

Randall and Sundrum (RS) [2]. In this case, one can obtain a solution to the hierarchy problem

by assuming that the gravity �eld propagates in the bulk of a slice of 5-dimensional anti de

Sitter space (AdS5) bounded by 4-dimensional \branes", while the Higgs �eld is localized on the

brane where the warp factor is small (the TeV or IR brane). In this case, all mass parameters,

the fundamental Planck scale, the curvature and the size of the extra dimensions, as well as

the Higgs vacuum expectation value (VEV), are of the same order. Due to the nontrivial

warp factor, however, the observable Higgs VEV is red-shifted to values much smaller than the

fundamental Planck scale.

In the minimal model of warped extra dimensions only gravity propagates in the bulk,

while the SM gauge and fermion �elds are localized on the same brane as the Higgs �eld.

The solution to the hierarchy problem, however, demands only the localization of the Higgs

�eld, and there is strong motivation to consider the propagation of the gauge �elds in the

bulk of the extra dimension. In particular, at scales below the AdS curvature k, the gauge

couplings evolve logarithmically [3, 4], and uni�cation of couplings in these scenarios may be

naturally achieved whenever the gauge �elds propagate in the bulk [5] (for a related discussion

in a supersymmetric context, see [6]). Bulk gauge �elds are, however, phenomenologically

challenging since they tend to induce large corrections to the precision electroweak observables.

These corrections are induced by a combination of two e�ects: for one, the presence of a

localized Higgs VEV induces a repulsion of the zero mode of the gauge �elds from the brane

location, implying a modi�cation of the weak gauge boson couplings to the brane �elds and

of the relation between the tree-level weak gauge boson masses and the Higgs VEV. Since

these Higgs localization e�ects are absent for the photon �eld, and are di�erent for the W and
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the Z gauge bosons, this induces important tree-level corrections to the precision electroweak

observables [7, 8]. Furthermore, the Kaluza-Klein (KK) modes of the gauge �elds couple to the

brane �elds with a coupling which is
p
2kL times larger than the zero mode gauge coupling,

where L is the proper size of the extra dimension. The dimensionless factor k L has to be about

30 so that the Higgs VEV is red-shifted from the Planck to the TeV scale. Therefore, the KK

modes couple strongly to the brane quark and lepton �elds and can induce large e�ects on the

precision electroweak observables.

The above e�ects imply a lower bound on the mass of the lightest KK mode of the gauge

�elds of the order of 27 TeV [8]. Such a large bound excludes the possibility of direct detection

of these KK modes at the Tevatron and the LHC. It also reintroduces to some extent the

hierarchy problem that the RS scenario intended to solve. However, in Refs. [9, 10] it was

shown that these bounds may be relaxed by considering the possible e�ect of brane localized

kinetic terms for the gauge �elds [11]. Large brane kinetic terms have the e�ect of enhancing

the four dimensional properties of the gauge �elds as seen by brane observers. In particular,

the presence of gauge kinetic terms on the IR brane, where the Higgs and fermion �elds are

localized, translates into a reduction of the Higgs localization e�ects, as well as of the e�ective

coupling of the heavy KK modes with respect to the one of the zero modes. In addition, the

KK masses depend strongly on the IR brane kinetic term and can decrease by up to a factor

of ten when these terms are large (and positive). As a result, the bound on the mass of the

lightest gauge KK mode mass may be relaxed down to a few TeV. Moreover, if the heavy

avor Z-pole observables are excluded from the data, it was found that, for certain values of

the weak gauge boson KK masses and of the local gauge kinetic terms, the �t to the precision

electroweak observables improves with respect to the one obtained within the Standard Model

with no extra dimensions.

In this work we are interested in considering the scenario of warped extra dimensions in the

light of grand uni�cation. The above described scenario, with the lightest KK modes in the

few TeV range, requires large brane kinetic terms on the IR brane. However, we will �nd that

it is necessary to assume that the GUT symmetry is broken on the IR brane, which implies

that the local kinetic terms need not be uni�ed. Indeed, generically the brane kinetic terms

include bare contributions, which encode the physics at or above the cuto� scale, as well as

radiative contributions that are calculable within the e�ective 5-dimensional theory. On the IR

brane, the latter e�ects are small since the local cuto� is not much above the TeV scale and

there is no room for a large logarithmic enhancement. Hence, a large IR brane kinetic term
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would have to arise from the unknown UV physics and it becomes necessary to assume that

this physics respects the GUT symmetry. The situation is di�erent for the UV brane kinetic

terms since there the local cuto� is of the order of the Planck scale and the loop contributions

are logarithmically enhanced at low energies. In fact, the large GUT violating logarithms that

are found in the calculation of the low-energy gauge couplings [3] can be understood as arising

from the RG ow of the UV brane kinetic terms, from the Planck to the TeV scale [4]. On

the other hand, most models of warped uni�cation seem to require orbifold breaking of the

gauge symmetry. Thus, to retain the predictivity of these grand uni�ed scenarios (e.g. for

the Weinberg angle), it is necessary to argue that the bare contributions to the brane kinetic

terms are small. One such argument is furnished by naive dimensional analysis (NDA) [12],

which assumes strong coupling at the cut-o� scale and demands brane terms to be small.

Nevertheless, it should be kept in mind that the IR kinetic terms could be larger than what

naive considerations would suggest, and have important e�ects for the spectrum of lowest lying

KK modes.

A further complication comes from the fact that the RS uni�ed model has TeV mass KK

gauge bosons which can mediate proton decay. In fact, since the e�ective cut-o� on the IR brane

is TeV, even non-renormalizable operators can lead to unacceptably short proton lifetimes.

These problems may be alleviated by assuming that the quarks and leptons come from di�erent

multiplets, and their partners are projected out by particular boundary conditions. Clearly, this

idea can only work if fermions also propagate in the bulk. In principle, fermions propagating

in the bulk tend to improve the two phenomenological challenges associated with bulk gauge

�elds, since these are mostly related to the localization of the fermion �elds in the same brane

as the Higgs �eld. However, it has been suggested that bulk fermions do not lead to a dramatic

relaxation of these constraints [13]. Moreover, the bulk fermions induce new contributions to

the precision electroweak observables [14], which can only be suppressed if at least some of the

third generation fermions are localized close to the infrared brane.

In this article, we shall analyze all these problems in detail and we shall demonstrate that

KK mode masses of the order of several TeV can be achieved by assuming either a non-vanishing

IR gauge kinetic term for the gauge �elds, or a large Higgs mass, together with a particular

geography of the fermion �elds in the extra dimensional bulk. In section 2, we describe the

model and introduce the question of uni�cation. In section 3 we present a formalism to study

the experimental implications in a simple and straightforward way. In section 4, we analyze

the novel e�ects to precision electroweak observables due to the Higgs localization e�ects and
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the contribution of the KK tower of gauge bosons and fermions in the bulk. In section 5, we

discuss the �t to the precision electroweak data. We reserve section 6 for our conclusions.

2 Grand Uni�cation

In this section we review the important features of grand uni�cation in RS. While we envision

the non-supersymmetric model of Ref. [5], our framework is quite general, de�ned by the low

energy theory, and thus we expect our conclusions to hold more generally for the RS uni�ed

framework. The background metric is de�ned by the line element,

ds2 = GMNdX
MdXN = e�2����dx

�dx� + dy2; (1)

where XM = (x�; y) denote the 5-dimensional coordinates, ��� = diag(�1;+1;+1;+1), �(y) =
kjyj and 0 � y � L. The gauge bosons are assumed to propagate in the bulk, while the

standard model Higgs is localized on the IR brane at y = L. We will also assume that the

fermions propagate in the bulk since in this case the question of proton decay can be more

naturally addressed, as we discuss below.

An important issue is how the grand uni�cation group is broken to the standard model

group. In the higher dimensional context there are various possibilities. These include dynam-

ical symmetry breaking through the Higgs mechanism (as in 4-dimensional models), as well

as intrinsically higher dimensional mechanisms where the gauge symmetry is broken by non-

trivial boundary conditions [15]. Orbifold breaking seems to be a powerfull ingredient in the

building of realistic models. When the symmetry is broken by orbifold boundary conditions,

the GUT symmetry is not an exact symmetry of the theory since there are special points in

spacetime where the symmetry is reduced to a smaller group. Operators living on the special

points are generally not GUT-symmetric, and can spoil the GUT predictions. In particular, it

is necessary to make further assumptions about the size of the localized terms that need not

respect the GUT symmetry. One way to proceed is based on NDA, which assumes that all

couplings get strong at the cut-o� scale of the e�ective 5-dimensional theory. This provides a

well de�ned framework in which the symmetry violating terms are suÆciently suppressed to be

able to discuss uni�cation quantitatively.

Let us emphasize that in order to achieve uni�cation in the non-supersymmetric case, rel-

evant threshold corrections at the grand uni�cation scale must be present. In warped extra

dimensions, these corrections arise naturally if the gauge symmetry is broken by bulk Higgs
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VEV's [5]. As we will discuss below, for light KK boson masses to be compatible with present

phenomenological constraints, the GUT symmetry also needs to be broken by orbifold bound-

ary conditions on the IR brane. Thus, in this work, we shall assume that the GUT symmetry

is broken by a bulk Higgs VEV, as well as by orbifold boundary conditions on the IR brane.

The dependence of the 3-2-1 gauge couplings measured by low energy observers (at energy

scales q � ke�kL) on the GUT scale in this type of compacti�cations has been studied in

previous articles [3, 4], and it was found that, contrary to what happens in at extra dimensions,

the di�erences between low-energy couplings depend logarithmically on the fundamental scales

of the theory and are given by:

1

g2i (q)
� 1

g2j (q)
=

0
@ 1

giUV
2 �

1

gjUV
2

1
A+

0
@ 1

giIR
2 �

1

gjIR
2

1
A +

(bi � bj)
8�2

log
k

q
+ (�i ��j)kL +O(1) : (2)

Here the �rst two terms can be thought of as the \bare" values of the localized couplings,

while the log term arises from loop e�ects and is identical to the contribution that is found

in purely 4-dimensional theories. The bulk couplings get renormalized in a universal manner

and, apart from threshold corrections, cancel in the di�erences. The �i terms correspond to

possible threshold corrections arising from the GUT breaking VEV's of bulk Higgs �elds, and

have the important property of being enhanced by k L [5]. Finally, the O(1) represents further
subdominant contributions. The leading, GUT violating, logarithmic e�ects in Eq. (2) can be

understood as arising from the RG evolution of the UV brane kinetic terms. It was shown in

Ref. [4] that, for k � q� k e�kL,

1

giUV
2
(q)

=
1

giUV
2 +

bi
8�2

log
k

q
+GUT symmetric ; (3)

which exhibits precisely the large logs found in the low-energy calculation. The precise �-

function coeÆcients depend on which �elds propagate in the bulk and most importantly on

whether those �elds have a signi�cant overlap with the UV brane. In fact, in the RS scenario

the heavy KK modes of all �elds are localized towards the IR brane and therefore each KK mode

gives only a tiny contribution to the low-energy gauge coupling. Although the sum of all of them

can give a contribution as large as the log in Eq. (3), when including the full GUT �eld content

the heavy KK modes give a universal contribution that cancels in the di�erential \running".

Thus, the di�erence in the 3-2-1 low-energy gauge couplings is e�ectively determined by the

zero modes alone. This is one way to understand the e�ective four dimensional behavior.

The gauge zero modes always contribute with full strength to bi since their wavefunctions

are at. For the fermions, however, it is possible to add a bulk mass term,M , whose e�ect is to
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control the localization of the zero mode. When M > k=2, the zero mode is localized towards

the UV brane and fully contributes to the gauge coupling running. However, when M < k=2

the zero mode is exponentially suppressed at the UV brane and e�ectively decouples from

the running above the TeV scale. There is also an intermediate region in which the fermions

contribute only partially to the renormalization of the gauge coupling. Then, splitting the gauge

and fermion contributions, the �-function coeÆcients are given by b1 = nf;1, b2 = �22=3 + nf;2

and b3 = �11 + nf;3, where the nf;i terms are associated with the fermions. Note that if the

fermions come in complete multiplets, then they contribute universally: nf;1 = nf;2 = nf;3.

However, we have seen that considerations related to proton decay forces us to split them into

di�erent multiplets, which can then have di�erent bulk masses. In practice, we will assume

universal fermion bulk masses and, as a result, the fermions do not have an impact on whether

the gauge couplings unify or not.

It is important to emphasize that within the framework of grand uni�cation in warped

extra dimensions, there is always a tower of XY gauge bosons with masses of order k e�kL �
TeV, where in general XY denote the non-standard gauge bosons arising as a remnant of

the broken grand uni�ed symmetry. In fact, this is an essential feature which allows one to

express the di�erences in the zero mode couplings, Eq. (2), in terms of large logs of only the

four dimensional beta functions. The key point is that the higher KK modes always come

in complete GUT multiplets (the heavy KK modes of the broken and unbroken gauge bosons

are approximately degenerate in mass) and do not inuence the coupling di�erences in a large

way [3]. However, this remarkable feature, a clear distinction of the RS-style grand uni�cation

from the more conventional 4-dimensional uni�cation scenario, is also a potential problem

phenomenologically. If the quarks and leptons are uni�ed in GUT multiplets, these gauge

bosons will induce proton decay at an unacceptable rate. One way of avoiding this problem

is to invoke boundary conditions that break the GUT symmetry, which implies that some

of the components within a given multiplet will get TeV masses. To accommodate the SM

spectrum it is then necessary to double the number of bulk matter multiplets, with the result

that quarks and leptons reside in di�erent multiplets. For example, for an SU(5) symmetry the

zero mode dR and lepton doublet of a given family arise from di�erent �5's. Thus, these models

do not have a true uni�cation of SM quarks and leptons. On the other hand the dangerous

couplings of broken gauge bosons to pairs of zero mode fermions are absent and cannot mediate

proton decay. One still has to worry about higher dimension operators. For example, if baryon

violating operators are present on the IR brane, they will only be suppressed by the TeV scale.
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Thus, it is necessary to forbid such operators up to a very high order. One possibility is to

impose some sort of gauged baryon symmetry, which is broken only on the UV brane [5]. All

the generated baryon violating operators will then be suppressed by the Planck scale.

For the analysis of the electroweak constraints, we will concentrate on an e�ective theory

valid just above the TeV scale, and use the previous considerations to motivate certain relations

among the e�ective parameters. We can then match to an e�ective 4-dimensional theory and

use the well measured low-energy data to �x these parameters.

3 The 4-dimensional E�ective Theory

We are interested in determining the bounds on the e�ective compacti�cation scale, k e�kL, in

the class of models described in the previous section. These arise both from deviations from the

standard model in the zero-mode sector of the theory, as well as from the e�ects mediated by

the Kaluza-Klein towers of the various bulk �elds. The former are associated with deformations

of the zero-mode wavefunctions due to the electroweak breaking Higgs VEV, which is localized

on the IR brane. The latter arise from exchange of KK mode gauge bosons or fermions between

zero mode �elds. The gauge KK towers induce four-fermion operators that can be important in

some regions of parameter space. Since these are tree-level e�ects, they can potentially impose

the strongest constraints on the model. In addition, due to the large top Yukawa coupling,

the top KK tower can induce important contributions to the T parameter, even though these

arise at loop level. Similarly dangerous contributions can arise from the KK modes of the

broken gauge bosons. The simplest way to analyze these e�ects is to �rst obtain the e�ective

4-dimensional theory. In this section, we derive the general form of the low-energy theory and

determine a region in parameter space where the top loop e�ects can be neglected.

In order to study the low-energy constraints, as well as the properties of the lowest lying

KK modes, we can consider an e�ective 5-dimensional theory with renormalized parameters at

the matching scale � k e�kL. The e�ective action describing the standard model sector (i.e.

the standard model �elds together with their corresponding KK towers) is then given by

S =
Z L

0
d4xdy

p
�G

(
� 1

2g25
W+
MNW

MN
� � 1

4g25
W 3
MNW

MN
3

� 1

4g05
2BMNB

MN + L	 � 2Æ(y)LUV � 2Æ(y � L)LIR
)
; (4)
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with

LUV =
1

2g2UV
W+
��W

��
� +

1

4g2UV
W 3
��W

��
3 +

1

4g0UV
2B��B

�� ; (5)

LIR =
1

2g2IR
W+

��W
��
� +

1

4g2IR
W 3
��W

��
3 +

1

4g0IR
2B��B

��

+ v2W+
� W

�
� +

1

2
v2(W 3

� �B�)
2 + L(h;	) ; (6)

where W�, W 3 are the SU(2) gauge bosons and B corresponds to the U(1)Y vector, with SM

hypercharge normalization. According to the picture discussed in the previous section, and

assuming for example a SU(5) grand uni�ed group, the parameters in the action Eq. (4) obey

the GUT relations g05 �
q

3
5g5 and g

0
IR �

q
3
5gIR, while g

0
UV and gUV di�er by the additional

logarithmic terms in Eq. (2). For simplicity, we neglect the threshold corrections �i in Eq. (2),

which would contribute to the bulk gauge couplings. In this way, we can capture the leading

loop e�ects arising from bulk �elds and may proceed with a tree-level analysis.

The SM Higgs is located on the IR brane, as required for the RS solution to the hierarchy

problem. It has a potential which generates a VEV hH0i � p
2v of order k, but due to

the background warping, the observable VEV appears red-shifted to ~v = v e�kL � 123GeV.

This induces electroweak symmetry breaking, with localized mass terms generated for the

electroweak gauge bosons. L(h;	) contains the Higgs kinetic and potential terms, as well as

the Yukawa couplings

�u ~H �	Q	tR + �dH �	Q	bR + �eH �	L	eR ; (7)

where Q = (tL; bL) and L = (�L; eL) denote the SU(2) quark and lepton doublets and tR, bR and

eR denote the quark and lepton SU(2) singlets. For simplicity, we have omitted the generation

indices. Note that all of these are 5-dimensional fermions that, after a KK decomposition,

include both left- and right-handed towers. The L and R subscripts simply indicate which one

of these towers contains a zero mode after the orbifold projection. Also, unlike the 4-dimensional

SM, the Yukawa coupling matrices �u, �d and �e have mass dimension �1.
We have not explicitly written the gluon terms, as they are irrelevant for the electroweak

constraints. We will discuss the bulk lagrangian for the fermions, L	, which contains the kinetic

as well as possible bulk mass terms, below.
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3.1 Integrating out the Kaluza-Klein tower in the Gauge Sector

We begin by integrating out the massive Kaluza-Klein modes of the electroweak gauge sector of

the theory. It will be suÆcient to do so at tree-level. In the presence of the gauge kinetic terms

required by uni�cation in the Randall-Sundrum scenario, as well as the localized Higgs VEV,

v, it is diÆcult to diagonalize the quadratic part of the gauge action exactly and, as a result,

the identi�cation of the massive eigenstates that need to be integrated out is somewhat tricky.

However, the electroweak precision measurements require that v be much smaller than the

curvature k, and it becomes possible to treat the electroweak breaking e�ects perturbatively.

Thus, we can make a KK decomposition assuming that v = 0, integrate out these \unperturbed"

massive modes, and include the e�ects of v in the low-energy e�ective theory as a perturbation.

It will be enough to consider the relevant part of the 5-dimensional action, Eq. (4), that

describes the SU(2) � U(1) neutral gauge bosons. It can be written as follows:

SN =
Z L

0
d4xdy

�
1

2
W 3

�O��W 3
� +

1

2
B�O0��B� + L � 2Æ(y � L)

1

2
~v2(W 3

� �B�)
2
�
; (8)

where ~v = ve�kL,

O�� � 1

g25

h
P �� + ���@y

�
e�2�@y

�
+ 2Æ(y)rUVP

�� + 2Æ(y � L)rIRP
��
i
; (9)

andO0�� is obtained from Eq. (9) by the replacements g5 ! g05, rUV ! r0UV and rIR ! r0IR. Here

we introduced the quantities ri � g25=g
2
i and r

0
i � g05

2=g0i
2, which have dimensions of length. As

explained in the previous section, the assumption of uni�cation implies that (assuming SU(5),

for example) g05 �
q

3
5g5 and g

0
IR �

q
3
5gIR, so that r

0
IR � rIR. The UV brane parameters, rUV

and r0UV account for the di�erence in the low-energy couplings of SU(2) and U(1). In Eq. (9)

we also de�ned the transverse operator P �� � ���@2� @�@�. For the analysis of the low-energy
constraints, it is clearly important to keep track of the fermion-gauge boson interactions,

L � �e�3� �	��(T 3W 3
� + Y B�)	 ; (10)

where 	 denotes a bulk standard model fermion, T 3 is the third weak iso-spin generator and

Y the hypercharge.

We are interested in the e�ective theory valid for momenta p� k e�kL, obtained by integrat-

ing out the massive KK modes at tree-level. As mentioned above, we can treat the electroweak

symmetry breaking VEV as a perturbation. We could then express the action Eq. (8) in terms

of the \unperturbed" KK wavefunctions, integrate out the heavy KK states and sum up their

9



e�ects on the gauge zero modes (which will get a mass of order g2~v2 after including v pertur-

batively). It is however simpler to treat the heavy KK modes as a single entity by working

in the 5-dimensional picture and integrating out the higher dimensional gauge �eld with the

zero-mode subtracted. More precisely, we write the 5-dimensional gauge �elds as

W 3
�(x; y) = gW (0)

� (x) + ~W 3
� (x; y)

B�(x; y) = g0B(0)
� (x) + ~B�(x; y) ; (11)

and require the orthogonality conditions

Z L

0
dy W (0)

�
~W 3
� [1 + 2Æ(y)rUV + 2Æ(y � L)rIR] = 0Z L

0
dy B(0)

�
~B� [1 + 2Æ(y)r0UV + 2Æ(y � L)rIR] = 0 ; (12)

which ensure that ~W� and ~B� contain exactly the part of the gauge �elds with a nonzero

\momentum" in the extra dimension (corresponding to the heavy modes in the KK picture).

In order to obtain the correct normalization of the zero-modes W (0)
� and B(0)

� , we factored out

explicitly the zero-th order gauge couplings de�ned by

g2 =
g25

L+ rUV + rIR
; g0

2
=

g05
2

L+ r0UV + rIR
: (13)

It is very convenient to consider the propagator associated with ~W�, ~B�, which is given by

~G�� = G�� �G(0)
�� ; (14)

where G�� is the full (unperturbed) gauge propagator and G(0)
�� the propagator for the zero-

mode. Both quantities on the right-hand-side of Eq. (14) are easily calculated. For example,

for W 3
� (in W 3

5 = 0 gauge), the full propagator in mixed position and momentum space has the

form

G3
�� (p; y; y

0) =
P��
p2

G3
p(y; y

0)� p�p�
p2

G3
0(y; y

0) : (15)

Here p2 � ����p�p� is timelike in the physical region and

G3
p(y; y

0) = � �g25e
k(y+y0)

k(AD �BC)

�
AJ1

�
p

k
eky<

�
�BY1

�
p

k
eky<

�� �
CJ1

�
p

k
eky>

�
�DY1

�
p

k
eky>

��
;

(16)
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where J�, Y� are Bessel functions of order �, y<(>) are the smallest (largest) of y, y0 and

A = Y0

�
p

k

�
+ p rUV Y1

�
p

k

�

B = J0

�
p

k

�
+ p rUV J1

�
p

k

�

C = Y0

�
p

k
ekL

�
� p ekLrIRY1

�
p

k
ekL

�
(17)

D = J0

�
p

k
ekL

�
� p ekLrIRJ1

�
p

k
ekL

�
:

The zero-mode propagator, on the other hand is simply given by

G(0)
�� =

g2

p2
��� : (18)

Replacing Eq. (11) in the action Eq. (8), we can derive the equations of motion for ~W 3
� :

O�� ~W 3
� = e�3� �	��T 3	+ 2Æ(y � L)~v2

h
(gW �

(0) � g0B�
(0)) +

~W �
3 � ~B�

i
: (19)

The classical solution to this equation can be written with the help of the \KK propagator",

Eq. (14), as

~W 3
� (X) =

Z
dX 0 ~G3

�� (X;X
0)
n
e�3� �	��T 3	+ 2Æ(y � L)~v2

h
(gW �

(0) � g0B�
(0)) + ~W �

3 � ~B�
io

(X 0)

�
Z
dX 0 ~G3

�� (X;X
0)
n
e�3� �	��T 3	+ 2Æ(y � L)~v2

h
gW �

(0) � g0B�
(0)

io
(X 0) ; (20)

where X = (x�; y), and in the second line we kept terms up to order ~v2. A similar expression

holds for ~B. The e�ective theory for the gauge zero-modes is obtained by replacing these

classical solutions back in the action Eq. (8). After expanding in derivatives to get an e�ective

action which is local, we arrive at

SN =
Z
d4x

�
�1

4
Z��Z

�� � 1

4
F��F

�� � 1

2
m2
ZZ�Z

� � eA�J
�
q

� e

s c
Z�
h
(c2 + ~v2G3

f )J
�
3 � (s2 + ~v2GB

f )J
�
Y

i
� 1

2
[G3

ffJ
3
�J

�
3 +GB

ffJ
Y
� J

�
Y ] + � � �

�
:(21)

where we neglected higher derivative terms, as well as terms of order ~v4 and higher. In the above

we de�ned the zero-mode fermion currents J�3 (x) = � (x)��T 3 (x), J�Y (x) = � (x)��Y  (x) and

J�q (x) = J�3 (x) + J�Y (x), and used the shorthand notation

Gf �
Z L

0
dy ~G0(L; y)jf (0)(y)j2

Gff �
Z L

0
dydy0jf (0)(y)j2 ~G0(y; y

0)jf (0)(y0)j2 ; (22)
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where f (0)(y) is the appropriate fermion zero-mode wavefunction (as de�ned in subsection 3.2).

The propagators, ~G0(y; y0), in Eqs. (22) are now given by Eq. (16), with the zero-mode part

subtracted as in Eq. (14) and evaluated at zero momentum, p = 0. The superscripts 3 or B in

the propagator terms appearing in Eq. (21) refer to the W 3 and B respectively. We also wrote

the action in the photon-Z basis

A� = sW (0)
� + cB(0)

�

Z� = cW (0)
� � sB(0)

� ; (23)

where c = g=
p
g2 + g02 and s = g0=

p
g2 + g02. Finally, the Z mass is given by

m2
Z =

e2~v2

s2c2

n
1 + ~v2[ ~G3

0(L;L) + ~GB
0 (L;L)] +O(v4)

o
: (24)

The second line in Eq. (21) contains the corrections to the Z-boson gauge couplings to fermions

due to the deformation of the zero-mode wavefunctions induced by the Higgs VEV, and the

four-fermion interactions induced by the electrically neutral KK towers. The �rst term in the

second line of Eq. (21) can be rewritten as

� e

s�c�
Z1=2
z� [J�3 � s2�J

�
q ]; (25)

where

s2� = s2
"
1 + ~v2

 
c2

s2
GB
f �G3

f

!#
(26)

and

Zz� = 1 +
~v2

s2c2

�
c2GB

f + s2G3
f

�
: (27)

We shall use Eqs.(26) and Eq. (27) in computing precision electroweak parameters later on.

The charged gauge sector can be handled in a similar fashion and it is easy to see that the

result of integrating out the massive states is

SC =
Z
d4x

�
�1

2
W+

��W
��
� �m2

WW
+
� W

�
�

� ep
2s
(1 + ~v2G3

f )
h
W+

� J
�
+ +W�

� J
�
�

i
� 1

2
G3
ffJ

+
� J

�
� + � � �

)
: (28)

where

m2
W =

e2~v2

s2

n
1 + ~v2 ~G3

0(L;L) +O(v4)
o
: (29)

and J��(x) = � (x)��T� (x), with T� = T 1 � iT 2, are the charged fermion currents.

12



3.2 Properties of Bulk Fermions

We now consider the fermions in more detail. The properties of bulk fermions in an AdS5

background are well-known (see e.g. [18]), but we summarize the relevant results, both for the

sake of completeness and to establish notation. For simplicity we shall ignore the e�ect of local

kinetic terms for the fermion �elds. In this case, the free action for a 5-dimensional fermion is

given by

S	 = �
Z L

0
d4x dy

p
�G

n
i	�AeA

MDM	+ iM		
o
; (30)

where �A are the at space 5-dimensional gamma matrices, DM is a covariant derivative, with

respect to both gauge and general coordinate transformations, G is the metric de�ned in Eq. (1),

eA
M is the corresponding vielbein, and M = c�0 is an (odd) bulk mass term. Expanding the

fermion �eld in Kaluza-Klein modes, 	L;R(x; y) = e3�=2
P
n  

(n)
L;R(x)f

n
L;R(y), one �nds that the

KK mode wavefunctions so de�ned satisfy

�
@y � 1

2
�0 �M

�
fnL;R = �mne

�fnR;L ; (31)

where the + (�) sign applies to the wavefunction of left-handed (right-handed) 4-dimensional

fermions [we take PL;R = 1
2
(1� �5)]. The orthonormality conditions required to obtain canon-

ically normalized kinetic terms in the e�ective 4-dimensional theory read

Z L

0
dyfn(y)fm(y) = Ænm : (32)

Of special relevance are the zero-modes, which satisfy

�
@y �

�
1

2
� c

�
�0
�
f0L;R = 0 ; (33)

and are therefore given by

f0L;R(y) =

s
k(1� 2c)

e(1�2c)kL � 1
e(

1

2
�c)� : (34)

Depending on the fermion Z2 parity, one of these zero-modes is projected out and the remain-

ing one has an exponential pro�le that is localized towards one of the orbifold �xed points

(depending on whether c > 1=2 or c < 1=2). In order to simplify the discussion we will adopt

a convention for the bulk mass term of a given fermion f such that cf > 1=2 (cf < 1=2)

corresponds to the physical zero mode being localized towards the UV brane (IR brane). For
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example, if 	Q and 	u denote the 5-dimensional fermion �elds corresponding to the left-handed

quark doublet and right-handed up quark SU(2) singlet respectively, then we de�ne cQ and cu

by

S = �
Z L

0
d4x dy

p
�G

n
i	Q �

AeA
MDM	Q + i	u �

AeA
MDM	u

+ icQ�
0	Q	Q � icu�

0	u	u + � � �
o
; (35)

Therefore, the zero-mode wavefunctions will always be given by

f0(y) =

s
k(1 � 2cf )

e(1�2cf )kL � 1
e(

1

2
�cf )� : (36)

We will also need the higher KK mode wavefunctions. With the above convention for the

bulk mass term, the Z2 even and odd solutions for a given 5-dimensional fermion �eld, denoted

by fn+(y) and f
n
�(y) respectively, are

fn�(y) = Ane
�
�
Jjcf� 1

2
j

�
mn

k
e�
�
+ b (mn=k)Yjcf� 1

2
j

�
mn

k
e�
��

; (37)

where

b(x) = �
Jjcf� 1

2
j(x)

Yjcf� 1

2
j(x)

: (38)

The KK masses are determined by the condition b(mn=k) = b(ekLmn=k) and the normalization

constants An are determined by Eq. (32).

The localized Higgs VEV, which is responsible for the zero-mode fermion masses, induces

mixing between the previous zero-mode and the massive KK tower in a way which is analogous

to the gauge sector described in the previous section. This mixing is proportional to both the

bare 5-dimensional Yukawa coupling and to the values of the KK wavefunctions at the VEV

position, y = L. The zero-mode wavefunctions at y = L can be obtained directly from Eq. (36).

As for the massive KK modes, we �nd that, for the lowest lying ones and for all moderate cf ,

the wavefunctions evaluated at the IR brane are given to a good approximation by

fn+(L) � �
p
2k : (39)

These mixing e�ects can be important in the top sector. In fact, since the e�ective 4-

dimensional top Yukawa coupling is close to one, it is necessary to move the top zero-mode

wavefunctions closer to the IR brane (cf < 1=2), or otherwise one would obtain an exponential

suppression of the e�ective 4-dimensional Yukawa coupling. This would require one to invoke a
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5-dimensional Yukawa coupling which is non-perturbative. Even for values of cf which result in

perturbative Yukawa interactions, the strong mixing enhances the loop e�ects of the KK modes

of the top, which can render the theory incompatible with electroweak precision measurements.

The Yukawa term that couples the even towers associated with the left- and right-handed

top has the following structure

p�GÆ(L� y)
�̂5
�

p
2v	tL	tR � Æ(y � L)mt

2
4 (0)

tL
 
(0)
tR +

p
2kL

atR

X
n6=0

 
(0)
tL
 
(n)
tR

+

p
2kL

atL

X
n 6=0

 
(n)

tL
 
(0)
tR +

2kL

atLatR

X
n;m6=0

 
(n)

tL
 
(m)
tR

3
5(40)

where we wrote the 5-dimensional top Yukawa coupling in Eq. (7) in units of the cuto� scale

� and introduced the dimensionless coupling �̂5. We also de�ned the parameters

af =

s
(1� 2cf )kL

e(1�2cf )kL � 1
e(1=2�cf)kL �

8>>><
>>>:

q
(2cf � 1)kL e�(cf�1=2)kL cf � 1=2 �> 1=2kL

1 cf = 1=2q
(1� 2cf )kL 1=2 � cf �> 1=2kL

(41)

and the zero-mode mass

mt = atLatR
�̂5
�L

p
2~v : (42)

First let us see what is required to reproduce the observed top mass, i.e. yt � atLatR�̂5=(�L) �
1. The volume suppression factor 1=(�L) indicates that we may want to make �̂5 as large as

possible. A similar situation arises in the gauge sector. Since the 4-dimensional (uni�ed) gauge

coupling g24 � ĝ25=(�L) is of order one, and �L > kL � 30, we are led to take the dimensionless

constant ĝ5 as large as possible. Thus, it is natural to assume that both these interactions

become strong at the cuto� scale � > k and we can use NDA to estimate the size of the

dimensionless couplings ĝ5 and �̂5. In this strong coupling limit, we have [12]

ĝ5 � l5 ; �̂5 � l5p
l4
; (43)

where l5 = 24�3 and l4 = 16�2 are the �ve- and 4-dimensional loop factors respectively.

Requiring that g4 � 1, we �nd �L � l5. Note that this gives �=k � l5=(kL) � 25 which shows

that the gauge interactions get strong at a scale where the theory looks 5-dimensional, and

therefore justi�es the use of the above 5-dimensional NDA analysis.
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The top Yukawa coupling is then

yt � atLatRp
l4

=
atLatR
4�

; (44)

which, according to Eq. (41), can easily be of order one if ctL, ctR are slightly below 1=2.

As an aside, we may ask whether the gravitational interactions also get strong at the scale

� de�ned above. This will be the case if the 5-dimensional Planck scale,M5, is related to � by

M3
5 � �3=l5. However, if we take k � 1016GeV as suggested by gauge coupling uni�cation and

MP = 2� 1018GeV, we �nd

M3
5

�3=l5
� kM2

P

�3=l5
= l5

�
MP

k

�2  k
�

!3

� 103 : (45)

Therefore, for the previous choice of parameters the gravitational interactions are still weak

when the gauge (and top Yukawa) interactions get strong.

Now let us go back to the e�ects of the massive KK top towers and the interactions

given in Eq. (40). Since the requirement that the top mass be reproduced led us to con-

sider ctL; ctR < 1=2, it follows from Eqs. (40) and (41) that the mixing e�ects are proportional

to mt

p
2kL=atL;R � mt=(

1
2
� ctL;R)

1=2. These couplings can be considerably large if cf is close

to 1=2 (but still 1=2 � cf > 1=2kL), thus imposing some further constraints on the allowed

region of parameter space. In fact, even if these factors are small enough that we can treat

these e�ects in the mass insertion approximation, there can still be sizable contributions to the

T parameter due to loops of the top KK modes. We estimate these contributions in the next

section.

4 Precision Electroweak Analysis

As described above, there are two main contributions a�ecting the precision electroweak ob-

servables in this theory. The �rst type are the Higgs localization e�ects that are associated with

a deformation of the zero-mode weak gauge boson wavefunctions and masses. These e�ects are

related to the functions Gf and ~G0(L;L) introduced in the previous section. When all fermions

have a common value of the bulk mass parameter cf , these a�ect the couplings of the gauge

bosons to quarks and leptons in a universal way. They are therefore associated with oblique

corrections. Also in this class are loop-level corrections to the gauge boson self-energies due to

the KK modes of bulk �elds. The second type of contributions arise from exchange of the KK
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modes of the gauge bosons at tree-level, leading to non-oblique corrections proportional to the

functions G3;B
ff introduced in the previous section. Since the Higgs localization e�ects are asso-

ciated with oblique corrections, their impact on all experimental observables can be described

in terms of parameters S, T and U , de�ned in Ref. [19]. These parameters provide an excel-

lent description of all precision electroweak data in the case that the non-oblique corrections,

parametrized by Gi
ff , are much smaller than the oblique ones, namely Gi

ff � Gi
0; G

i
f .

Whenever the non-oblique corrections are non-negligible, the above procedure cannot be

applied. However, there are certain cases in which e�ective parameters Seff , Teff and Ueff

may be de�ned in order to describe only a subset of the experimental data, which, due to

its precision, leads to the most stringent experimental tests on the theory. This is the case,

for instance, whenever the heavy KK modes of the neutral gauge �elds are suÆciently heavy,

the only impact of non-oblique corrections on mW and the Z-pole observables comes indirectly

from the Fermi constant GF . Using GF as an input value to the precision electroweak data,

the non-oblique corrections induced by the heavy KK modes data can be easily absorbed into

the de�nition of new, e�ective parameters Teff and Ueff [10]. The advantage of this procedure

is that the functional dependence of mW and the Z-pole observables on the new e�ective

parameters is the same as the functional dependence of these observables on S, T and U in

the case in which only oblique corrections are present, and thus, one can use the �ts of S, T ,

and U derived from such observables to understand the physical picture and constraint the

parameters of the model.

4.1 Massive Kaluza-Klein e�ects

We start by considering the e�ects of the heavy KK modes in the theory. First, due to the

large top Yukawa coupling, the top KK modes can induce potentially large contributions to the

T parameter. In fact, we saw in Eq. (40) that the localized Higgs VEV induces large mixings

between the top-quark left and right zero modes and their even KK towers. Furthermore, the

heavy KK modes receive electroweak breaking contributions to their masses that are enhanced

by factors of 2kL.1 The largest contributions to T are dominated by graphs with the heavy

KK modes running in the loop. These may be estimated in the mass insertion approximation.

The contribution induced by the mixing of the �rst KK modes of the left- and right-handed

1These factors arise from the KK mode wavefunctions at the IR brane, and are also responsible for the strong
coupling of the KK modes to IR brane �elds.
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top quark is of order

�Tt1
L
;t1
R
�
 

2kL

atLatR

!4  
mt

m
(1)
t

!2 "
Nc

16�s2c2

�
mt

mZ

�2#
; (46)

where m
(1)
t is the mass of the heaviest of these two KK modes, atL and atR were de�ned in

Eq. (41), s is the sine of the weak mixing angle, and the term in square brackets is the SM top

contribution, which is of order one. Note that, due to the brane localized Yukawa interactions

and the consequent mixing among KK modes exhibited in Eq. (40), summing up the KK tower

leads to a quadratic sensitivity on the cuto� ~� = � e�kL.2 This quadratic sensitivity depends

strongly on the assumption that the couplings of the heavy KK modes are well described by

Eq. (40). For example, the presence of IR brane localized kinetic terms for the top and bottom

quark �elds can suppress the couplings between the Higgs and the higher top KK modes [20]

and lead to a milder sensitivity to the cuto� scale. Since we expect that the contribution of

the lightest KK mode remains approximately una�ected by these e�ects, Eq. (46) provides a

lower bound on the total e�ect of integrating out the heavy KK modes.

An upper bound on the order of magnitude of the contribution of the KK tower on T

may be obtained by a naive extrapolation of the sum over all KK modes up to the cuto�

scale, which at the end of subsection 3.2 was estimated as ~� �< 25k e�kL. For ctL; ctR < 1=2 it

reads �T �< 60 (12 � ctL)�2(12� ctR)�2(mt=m
(1)
t )2. Therefore, this contribution may be strongly

suppressed for values of cf � 1=2.

However, as shown in Ref. [10], when the fermions are localized towards the IR brane,

cf � 1=2, there are important non-oblique corrections and, in the absence of local gauge

kinetic terms the bounds on the KK scale become tight [10]. One possibility is to take the

bulk mass parameters of the �rst and second generation larger than the one associated with

the third generation. However, choosing di�erent bulk masses for the fermions can potentially

lead to large FCNC e�ects [17]. In particular, taking the third generation cQ very di�erent

from the �rst two generation cf 's can lead to dangerous contributions to Z ! b�b [14]. Thus,

in order to keep non-oblique corrections small, while suppressing the dangerous contributions

to the Z ! b�b decay width and avor changing neutral currents we are led to take equal cf 's

for the left-handed top and the �rst two generations of fermions. The constraints on tR are

much weaker and it is possible to render the above contributions to T negligible by taking ctR
suÆciently negative.

2This is similar to the model of Ref. [16], which contained large, uncalculabe, contributions to the � parameter.
Note, however, that in our case the compacti�cation scale is about an order of magnitude higher.
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There are also contributions that are sensitive only to ctL, which are induced by the  
n
tL
{ 0

tR

mixing. The e�ect of the �rst KK level is given by

�Tt1
L
;t0
R
� (2kL)2

3a4tL

0
@ mt

m
(1)
tL

1
A2 "

Nc

16�s2c2

�
mt

mZ

�2#
; (47)

and, as before, one can estimate the KK contribution to T , which scales like log ~�, by summing

up the e�ects of the KK modes lighter than ~�. For � � 25k, these type of contributions give

�TKK �< 4 (12 � ctL)
�2 (mt=m

(1)
tL )

2.

The KK tower e�ects computed above can be considered as a conservative estimate of the

total contribution to the T parameter. Such e�ects can be rendered small by taking appro-

priate values of ctL and ctR. For instance, considering ctL ' 0:3 and ctR ' �5, and using

m
(1)
tL �> 2:5ke�kL, these contributions are smaller than about 1/10 of the dominant contribu-

tion induced by the oblique corrections to the gauge boson masses and wave functions, that

will be discussed in more detail in the next section. Therefore, for cf = ctL ' 0:3, ctR ' �5,
where cf stands for the rest of the fermions, the above corrections have a negligible impact on

the �t to the experimental data.

Let us remark that the e�ects of the physics above ~� can be parametrized in the e�ective

theory by local operators such as

OT = Æ(y � L) c

�2

�
HyD�H

�2
: (48)

Even when the unknown coeÆcient attains its strong coupling value, c � 16�2, their contribu-

tion to T is negligible for � � 25k and k e�kL above a few TeV.

There are possible additional e�ects induced by the presence of the GUT theory. The KK

modes of the heavy X and Y bosons of the theory are essential for the question of uni�cation of

couplings, but can also induce important contributions to the precision electroweak observables.

This is due to the fact that these gauge bosons form a doublet under SU(2) and, if coupled to

the Higgs, can lead to large contributions to the T parameter, because the splitting in masses

squared will be of order ~v2, while their masses are of order TeV. In fact, if these gauge bosons

are even about the IR brane, so that the IR brane respects the GUT symmetry, they give a

contribution to T of order

�TXY � Nc(2kL)2

4�s2

 
~v

m
(1)
XY

!2

; (49)

which is of order one when m(1)
XY , the mass of the �rst KK mode of the gauge bosons X and Y

is of order of a few TeV. A straightforward way of cancelling these e�ects is by demanding the
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X and Y gauge bosons to be odd under the Z2 orbifold associated with the IR brane. In this

case, their couplings to the Higgs vanish and these additional contributions to the electroweak

precision observables become negligible, because the XY masses are highly degenerate.

4.2 E�ective S, T and U parameters

Having established that the possible e�ects from the heavy KK modes of the fermions and the

GUT sector of the theory can be made negligible, we turn to the e�ects associated with the

zero-mode sector and the non-oblique contributions to GF . From the expression of the e�ective

action for the charged gauge currents and mW , Eqs. (28) and (29), respectively, one �nds that

GF is given by

4
p
2GF =

1

~v2

h
1 + ~v2

�
2G3

f � ~G3
0(L;L)�G3

ff

�i
: (50)

The last term in the above equation represents the non-oblique corrections. Observe that, with

this normalization ~v ' 123 GeV.

In the case the non-oblique corrections, proportional to the four-fermion interactions Gff

are negligible, the corrections to all experimental data at the Z-pole, can be taken into account

via the standard S, T and U parametrization. Following the procedure outlined in Ref. [19]

and using Eqs. (26), (27) and (29), one �nd the values

�S � 4~v2[s2G3
f + c2GB

f ] +O(~v4) ;
�T � ~v2[2GB

f � ~GB
0 (L;L)] +O(~v4) ; (51)

�U � O(~v4) ;

As mentioned above, in many cases the only relevant non-oblique corrections to mW and

the Z-pole observables come indirectly through the Fermi constant GF . In this case, following

Ref. [10], and considering the expression of GF , Eq. (50), it is possible to de�ne the e�ective

parameters Seff , Teff and Ueff , which are given by,

�Se� � 4~v2[s2G3
f + c2GB

f ] +O(~v4) ;
�Te� � ~v2[2GB

f � ~GB
0 (L;L) +G3

ff ] +O(~v4) ; (52)

�Ue� � �4s2~v2G3
ff +O(~v4) ;

For completeness, we shall also give the expression for ��(0), which is de�ned as the low-

energy ratio of neutral to charged current interactions. These low-energy observables depend
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on the following combinations

�3;B = 2G3;B
f �G3;B

ff � ~G3;B
0 (L;L) : (53)

In terms of �3;B, the e�ective charged four-fermion interaction, which determines the Fermi

constant, GF , from muon decay, is given by

CC =
1

~v2

n
1 + ~v2�3 +O(~v4)

o
� GF : (54)

Similarly, the neutral four-fermion interaction that is relevant in neutrino-nucleon scattering

can be written as

NC = T 3
�

�
T 3
q � �s2Qq

� 1

~v2

n
1 + ~v2[�3 +�B] +O(~v4)

o
; (55)

where

�s2 = s2
(
1 + ~v2

"
G3
ff �G3

f �
c2

s2
(GB

ff �GB
f )

#
+O(~v4)

)
: (56)

It follows that

��(0) = 1 + ~v2�B +O(~v4) : (57)

It is important to stress that, in the case in which all SM fermions are localized on the

infrared brane, Gi
ff = Gi

f = Gi
0(L;L) and therefore �3;B = 0. Consequently, in this case

��(0) = 1, while �s2 = s2.

4.3 Explicit Expressions for Gf , Gff and ~G0(L;L)

We have established that the most important new e�ects in the low-energy theory are contained

in Gf , Gff and ~G0(L;L), which we now evaluate in terms of the fundamental parameters of the

5-dimensional theory. For simplicity, in this subsection we assume that we have a simple gauge

group. The application to the SU(2) � U(1) theory is straightforward: one simply plugs the

relevant expressions for the SU(2) and U(1) sectors into the formulae of the previous section.

As we have seen in Eqs. (24) and (29), the corrections to the gauge boson masses are determined

by ~G0(L;L), which is given by

~G0(L;L) = �e
2kLg2

k2
2k2(L+ rUV )2 � 2k(L + rUV ) + 1

4k(L + rUV + rIR)
: (58)

The corrections to the fermion-gauge boson vertices and the e�ects of the massive KK

modes are contained in Gf and Gff . These depend on the fermion zero-mode wavefunctions
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and therefore on the parameter cf , which we are taking to be common for all the fermions with

the exception of ctR, as discussed in subsection 3.2. Using the zero-mode wavefunctions given

in Eq. (36) to evaluate Eqs. (22), their exact analytic expressions can be obtained in a straight-

forward manner, but unfortunately the results have a somewhat complicated dependence on

cf . However, there are some limits in which the expressions simplify considerably. There are

three qualitatively di�erent cases depending on whether cf � 1
2
> 1=2kL, 1

2
� cf > 1=2kL or

cf � 1
2
. These cases correspond to whether the fermion zero-mode wavefunction is localized

towards the UV brane (cf >
1
2
), towards the IR brane (cf <

1
2
) or the conformal case cf =

1
2
.

� cf � 1
2 > 1=2kL: The zero-mode fermions are localized towards the UV brane. Neglecting

exponentially small terms we �nd that,

Gf =
e2kLg2

k2
k(L + rUV )� 1 � krIR + 2k2rIR(L + rUV )

4k(L + rUV + rIR)
; (59)

Gff = �e
2kLg2

k2
2k2r2IR + 2krIR + 1

4k(L+ rUV + rIR)
; (60)

where g is the (zero-th order) zero-mode gauge coupling de�ned in Eq. (13) and we have dropped

exponentially suppressed terms of order e�kL. The results in Eqs. (59) and (60) are independent

of cf .

From these expressions we also �nd that the � parameter, Eq. (53), that enters in the

low-energy observables is given by

� = 2Gf � ~G0(L;L)�Gff =
e2kLg2

2k2
k(L+ rUV + rIR) : (61)

� cf = 1
2 : This is the conformal case in which the zero-mode fermions couple with equal

strength at all points along the extra dimension. We �nd

Gf =
e2kLg2

k

rUV (1 + 2k2LrIR)� krUV (L+ rUV + rIR) + rIR(2k2L2 � 2kL+ 1)

4k2L(L+ rUV + rIR)
; (62)

Gff = �e2kLg2 r
2
UV � 2(kL� 1)rUV rIR + (2k2L2 � 2kL + 1)r2IR

4k3L2(L+ rUV + rIR)
; (63)

and

� =
e2kLg2

2k2

 
2k2L2 � 2kL + 1

2k2L2

!
k(L + rUV + rIR) : (64)

Note that Eqs. (62) and (63) vanish when rUV = rIR = 0. This is a consequence of the gauge

orthogonality condition, Eq. (12), and the fact that in the conformal case the fermion zero-mode
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wavefunction is at and therefore proportional to the gauge zero mode wavefunction. Thus,

the coupling of the zero-mode fermions to the higher KK gauge modes vanishes identically in

this case.

� 1
2
� cf > 1=2kL: When the fermions are localized towards the IR brane the expressions

for Gf and Gff have a very complicated dependence on cf and we do not present them here.

However, the linear combination corresponding to � simpli�es to

� =
e2kLg2

4(1 � cf)k2
k(L+ rUV + rIR) : (65)

Finally, we emphasize again that in the limit where the fermions are localized on the IR

brane, we have

Gf = Gff = ~G0(L;L) ; (66)

where ~G0(L;L) was given in Eq. (58). These expressions can also be formally obtained by

taking the limit cf !�1.

Note that, after multiplying by ~v2, all the corrections are of order g2v2=k2 times a function

of kL, krUV and krIR, which may represent an enhancement or a suppression depending on the

location of the fermions. The corrections to the gauge boson masses, determined by ~G0(L;L),

are always enhanced by a factor of order kL. When the fermions are localized towards the

UV brane, we have Gff � Gf � ~G0(L;L). The conformal case is somewhat special, since

Gf and Gff vanish when rIR = rUV = 0. For the values of the brane kinetic coeÆcients that

interest us 3, kr0UV ' 10 and krUV ' �10, it is still true that ~G0(L;L) dominates over Gf and

Gff . In the limit that the fermions are localized towards the IR brane, one generically has

Gff �< Gf �< ~G0(L;L). Note also that unless cf is very large and negative, � has always the

same order of magnitude, independently of the location of the fermions, and is enhanced by

O(kL). The behavior of Gf and Gff as a function of cf can be seen in Fig. 1. In Fig. 2, we

show the relative size of Gf and Gff compared to ~G0(L;L) for 0 < cf < 1. We observe that

the non-oblique corrections coming from Gff are much smaller than the oblique contributions

Gf and ~G0(L;L) in this region.

3The values of the local brane couplings rUV have been estimated by assuming, as in Eq. (3), that they
include all the large logarithmic contributions, that lead to the di�erence between the high- and low-energy
gauge couplings

23



-1 -0.5 0 0.5 1
cf

-40

-30

-20

-10

0

0 0.2 0.4 0.6 0.8 1
cf

0

100

200

300

400

500

Figure 1: Behavior of Gf=G
1
f (left) and Gff=G

1
ff (right) as a function of cf , where the super-

script 1 indicates cf = +1 (fermions localized on the UV brane). The curves correspond to
k rUV = 0 (red), k rUV = 10 (blue) and k rUV = �10 (green). In all of them we took k rIR = 0
and kL = 30.

5 Precision Electroweak Measurement Constraints

In this section, we present the analysis of the precision electroweak data. As we have discussed in

the previous section, whenever the e�ect of the four-fermion interactionsGff becomes negligible,

the oblique parameters S, T and U , Eq. (51) lead to a good parametrization of the corrections

to all relevant experimental data. In this case, the e�ective parameter U is equal to zero

within the order of approximation we are using and therefore one can e�ectively reduce the �t

to the experimental data to a two parameter �t. We shall consider as input parameters the

experimental values of the mass MZ , the Fermi constant GF and the electromagnetic gauge

coupling. This will determine some of the underlying parameters of the model. Based on the

grand uni�ed RS scenario we take g5 =
q
5=3g05. From Eq. (3), taking k �MGUT � 1016 GeV,

we estimate that the size of the log term in r0UV should be roughly L=3 provided the bare

r0UV is small and b1 not much di�erent from its SM value. Our results are rather insensitive

to this choice. From here, for each given value of L and rIR, we �x ~v, g5 and rUV using the

experimental values of GF , � and MZ (c.f. Eq. (50), Eq. (24) and Eqs. (13)). We will vary the

remaining free parameters, rIR, L, and the Higgs mass, to see which regions of parameters are

in accord with precision measurements.

An inspection of the results presented in section 4.3 leads to the conclusion that, whenever

cf �> 0:3, the four-fermion interactions may be safely neglected. On the other hand, values of

ctL and ctR smaller than about 0.5 may be needed in order to avoid large contributions to the

T parameter induced by KK fermion loops. In order to minimize the contribution of the KK
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Figure 2: Behavior of Gf= ~G0(L;L) (left) and Gff= ~G0(L;L) (right) as a function of cf . The
curves correspond to k rUV = 0 (red), k rUV = 10 (blue) and k rUV = �10 (green). In all of
them we took k rIR = 0 and kL = 30.

fermion modes to the T parameter, one can proceed with the localization of the third family

in the infrared brane, as suggested in Ref. [14]. Alternatively, choosing the value of ctR < �5,
while keeping all other fermion bulk mass parameters cf �< 0:5, is suÆcient to suppress the

most important loop-induced contributions to the precision electroweak parameters.

In this work, we shall choose ctR ' �5, while for all other fermions cf = 0:3. This procedure

keeps all light fermions at the same location in the bulk. This choice of bulk mass parameters

cf has the advantage, compared to the case in which all the third generation fermions are local-

ized on the IR brane, that avor changing neutral current contributions are suppressed, with

the largest FCNC e�ects in the right-handed up-type sector, inducing a Z-tR-cR interaction4.

Furthermore, large additional contributions to Rb arising from the mismatch of the Z coupling

to bottom quarks compared to other fermions are avoided. Finally, for these values of the pa-

rameters, the description of the Z-pole observables and mW in terms of the oblique parameters

S, T and U remains valid, and should be computed by universally taking cf = 0:3. For cf = 0:3

the value of ~G0(L;L) is much larger than Gf and Gff . From Eq. (51), and the results presented

in Figure 2, one immediately observes that the theory tends to induce relatively large values of

the T parameter and small contributions to the parameter S.

These extra dimensional contributions to S and T must be combinedwith the more standard

contributions from the Higgs. Compared to some reference Higgs mass m2
ref (which must be

4The size of this interaction can be estimated assuming that the right-handed rotation matrices are of the
order of the corresponding CKM elements, resulting in a Z-t-c coupling strength of 10�6g. This is well below
existing low energy bounds and is too small to a�ect single top production at the LHC [21].
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speci�ed when performing the �t), the Higgs contributions are [19],

SH ' 1

12�
log

 
m2
h

m2
ref

!
(67)

TH ' � 3

16�c20
log

 
m2
h

m2
ref

!
(68)

UH ' 0: (69)

Thus, we observe that the large positive corrections to the T parameter from the extra dimen-

sions may be cancelled by the large negative corrections associated with a massive Higgs boson

in the standard 'conspiracy' scenario familliar when there are weak scale vector-like quarks

which mix with top [22]. Therefore, it is natural to expect that in this case the bounds on

the KK gauge boson masses may be relaxed by taking large values of mH. On the other hand,

a large Higgs boson mass also induces positive corrections to the parameter S. However, for

cf ' 0:3, this contribution is also cancelled by the one coming from KK modes, which turns

out to be negative and comparable to the one coming from the Higgs, for approximately the

same values of the KK masses as the ones needed to cancel the T contribution.

5.1 Numerical Results

In Ref. [10] we demonstrated that, in the case of light KK modes, the �t to the precision

electroweak data is greatly improved by the presence of brane gauge kinetic terms. The main

reason for this improvement is associated with the fact that for the same values of k and L, the

mass of the �rst gauge boson KK mode becomes signi�cantly lower for large values of riIR, than

in the case of vanishing brane kinetic terms. However, since we are interested in the question of

uni�cation of couplings, we cannot set riIR to arbitrarily large values. Of course, if the riIR are

uni�ed, they will not disrupt the uni�cation of the gauge couplings. However, since we must

impose orbifold breaking of the GUT symmetry on the IR brane to suppress the contributions

from loops of the broken gauge bosons to T , there is no reason to expect that the various riIR
would be uni�ed, and thus the prediction of uni�ed gauge couplings could be lost. Therefore,

we shall only concentrate on small values of kriIR �< 2, assuming that they are the same for

both electroweak gauge �elds, and thus do not disrupt uni�cation. Note that even should they

not be uni�ed, krIR of order 2 will change the uni�cation conditions by roughly the same order

of magnitude as the threshold corrections needed for RS uni�cation anyway. Thus, our results

may be taken as indicitive of the picture for small but non-uni�ed IR brane terms as well.
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Figure 3: Allowed bands of the RS uni�ed model in the parameter space of the Higgs mass and
the �rst KK mode mass. The central green band represents 1� agreement with the electroweak
�t to S and T (with U = 0), whereas the surrounding blue and red bands indicate 2� and 3�
agreement, respectively.

Our framework has U ' 0, and thus we choose to compare the RS model with the LEP

electroweak working group �t to S and T which imposes U = 0 in the �t [23]. In Figures 3,4

we present the results for the upper bound on the �rst weak gauge boson KK mass MKK as

a function of the Higgs mass for cf = 0:3 (for all fermions except the top right, as explained

above), and for (small) di�erent values of rIR. As anticipated, the �t to the data is signi�cantly

improved by large values of the Higgs mass mh �> 300 GeV5. However, the bound on the �rst

weak gauge boson KK mode mass is still about 11 TeV and therefore diÆcult to detect at

the LHC. However, even the addition of small kinetic terms in the infrared brane may have

dramatic e�ects in the spectrum. Indeed, in the case of kr0IR = kr2IR = 2 (kr0IR = kr2IR = 1)

a bound of about 4 TeV (5 TeV) may be obtained for values of the Higgs mass larger than

400 GeV. Even in the case of a light Higgs boson, mh < 200 GeV, one can accomodate values

5Note that while such large Higgs masses are generally incompatible with uni�cation because the Higgs
self-interaction typically reaches a Landau pole before the GUT scale, in the RS scenario �elds localized on the
IR brane see an e�ective cut-o� of order ~� = � e�kL, relaxing this constraint.
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Figure 4: As Fig. 3, but with non-zero (uni�ed) kinetic terms on the IR brane of krIR = 1; 2.

of the gauge boson KK masses of about 5 TeV in a way consistent with precision electroweak

data. Observe that even for large values of the Higgs mass, of about 1 TeV, a good �t to the

precision electroweak data can be obtained, due to the simultaneous cancellation of the T and

S contributions coming from the Higgs and extra dimensional e�ects discussed at the end of

the last section.

Given the above conclusions, it seems possible that the LHC can study the prospect of RS

uni�cation. The electroweak data requires the masses of the �rst KK gauge bosons to be around

11 TeV (a few TeV if the krIR are allowed to be as large as 2 and the Higgs mass �> 300 GeV).

Given that this over-all scale is large compared to ~v, one thus expects quasi-degenerate SU(3),

SU(2), U(1), and XY gauge bosons. Even at 8 TeV, it may be possible to see signs of the KK

gluons indirectly, e.g. as �qq�qq operators one might search for as a sign of quark compositeness.

For masses in the range of a few TeV, there is the hope that the GUT sector could be produced

and studied, providing clear experimental evidence of an RS uni�ed theory.
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6 Conclusions

Warped extra dimensional scenarios have the remarkable property of leading to a logarithmic

dependence on the fundamental scale k in the di�erence between the low energy couplings of

the model. Since the logarithmic dependence is controlled by the 4-dimensional beta functions

of the theory, this implies that the question of uni�cation may be studied at a similar level of

precision as in the four dimensional case.

In this work we studied a particular realization of these scenarios that is consistent with

uni�cation of couplings, and leads to the SM as the low energy e�ective theory. While the

Higgs �eld is localized in the IR brane, in a way consistent with the Randall-Sundrum solution

to the hierarchy problem, the gauge bosons and the fermions �elds propagate in the bulk.

We introduce a formalism that allows to study the main corrections to the precision elec-

troweak data in warped extra dimensions in the case in which the gauge �elds propagate in the

bulk. These corrections are parametrized by three set of functions Gff , Gf and G0, associated

with e�ects induced by the heavy KK modes as well as the gauge boson zero mode wavefunc-

tion and mass corrections respectively. These functions also depend on the localization of the

fermions in the bulk.

In the case of bulk fermions which couple to the Higgs in a relevant way, there may be

other important loop corrections to the T parameter. These originate from the breakdown of

the custodial symmetry associated with the large top-quark Yukawa coupling and constrain

the right-handed top-quark mass parameter to be negative, ctR < 0, while the value of the

left-handed top-quark mass parameter must be smaller than the conformal case value, cQ3

L
<

0:5. In our work we have chosen values of the fermion mass parameters cf such that the

contributions to avor changing neutral currents and to Rb = �(Z ! b�b)=�(Z ! hadrons) are

suppressed, while the fermion induced contributions to the precision electroweak observables

become subdominant.

The result of our analysis shows that, with small but non-vanishing local brane kinetic terms

for the gauge �elds, one can obtain a model consistent with un�cation of couplings and with

precision electroweak data with gauge boson KK masses of the order of a few TeV. The bound

on the gauge boson KK masses is correlated with the value of the Higgs mass, and a light

KK spectrum demands Higgs masses larger than 300 GeV. Thus, the RS uni�ed framework

provides a scenario which is a novel alternative to 4-dimensional SUSY grand uni�cation, with

potentially interesting experimental signatures at the LHC.
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